
AUTOMATIC EXTRACTION OF FEMUR CONTOURS FROM CALIBRATED X-RAY
IMAGES: A BAYESIAN INFERENCE APPROACH

Xiao Dong and Guoyan Zheng

MEM Research Center, University of Bern
Stauffacherstrasse 78, CH-3014, Bern, Switzerland

ABSTRACT

Automatic identification and extraction of bone contours from

x-ray images is an essential first step task for further medical

image analysis. This paper proposed a 3D statistical model

based framework for the proximal femur bone contour ex-

traction from calibrated x-ray images. The initialization to

align the statistical model is solved by a particle filter on a

dynamic Bayesian network to fit a multiple component geo-

metrical model to the x-ray images. The contour extraction

is accomplished by a non-rigid 2D/3D registration between

the 3D statistical model and the x-ray images, in which bone

contours are extracted by a graphical model based Bayesian

inference. Experiments on clinical data set verified its robust-

ness against occlusion.

Index Terms— Contour extraction, registered x-ray, sta-

tistical model, Bayesian inference, graphical model

1. MOTIVATION

Accurate extraction of bone contours from x-ray images is an

important component for computer analysis of medical im-

ages for diagnosis[1][2][3], planning or 3D reconstruction of

anatomic structures[4][5][6]. X-ray images may vary a lot

in brightness and contrast as well as in the imaged region of

anatomy. Therefore conventional segmentation techniques[1]

can not offer a satisfactory solution and model based segmen-

tation is usually implemented to obtain robust and accurate

results[3][4][7][8].

In [3][8][9][10], 2D statistical models (ASM or ASM)

are constructed from a training image set under the assump-

tion that the images are taken from a certain view direc-

tion. 2D statistical models can encode both the shape and

image intensity information learnt from training data set,

which is helpful to improve the robustness and accuracy

with noisy images. Due to the limited convergence region,

2D statistical model asks for a proper initialization. Fully

automatic initialization can be accomplished by the gener-

alized Hough transformation[8], neural nets or evolutionary

algorithms[9][10]. But both the initialization and segmen-
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tation performance rely on whether the view direction as-

sumption can be fulfilled. 3D statistical models are also used

for 2D segmentation and 3D reconstruction from calibrated

2D x-ray images[4][5][6]. 3D statistical models usually only

contain shape information but not the intensity information

on the 2D images. But it can be used for segmenting an im-

age taken from an arbitrary view direction. The initialization

of the 3D model is usually manually defined[4][5]. Due to

the dense mesh of the 3D statistical model, fully automated

solutions based on evolutionary algorithm is computational

expensive[11].

Bayesian network based approach[13][14][15] has been

used to identify or track objects. The Bayesian network

embeds the object information in a graphical model, where

the constraints among subparts of the object are represented

as potentials among nodes and the local image information

correspondent to each subpart as the observation of each

node. Bayesian network is also exploited to find deformable

shapes[16][17].

We propose a 3D statistical model based fully automatic

proximal femur bone contour segmentation for calibrated x-

ray images, where graphical models based Bayesian inference

play a key role in both the initialization to align the 3D statisti-

cal model with the x-ray images and the following up contour

extraction by a non-rigid 2D/3D registration between the 3D

statistical model and the 2D images.

2. METHODS

2.1. Image acquisition

In our work calibrated x-ray images from C-arm are used.

Due to the limited imaging volume of C-arm, we ask for four

images for the proximal femur from different view directions,

of which two images focus on the proximal femoral head and

the other two focus on the femoral shaft. The calibrated x-ray

image set is represented by I.

2.2. 3D statistical model of the proximal femur

A Principal Component Analysis (PCA) based 3D statistical

model M with 4098 vertices of the proximal femur is con-
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structed from a collection of 13 CT data of the proximal femur

as shown in Fig. 1(a). An instance generated from the statis-

tical model with parameter set Q = {α, β0, β1, . . . , β11} can

be described as

M : S(Q) = α(S0 +
11∑

i=0

βiλ
1
2
i Pi) (1)

where S0 is the mean model, α is the scaling factor, λi and Pi

are the ith eigenvalue and the the correspondent eigenvector

of the correlation matrix of the training data set.

(a) PCA based 3D statistical

model

(b) Multiple component geo-

metrical model

(c) The Bayesian

network for the

multiple compo-

nent geometrical

model

(d) The dynamic Bayesian network for fit-

ting the multiple component geometrical

model to x-ray images

(e) Fitting the geometrical 3D model with x-

ray images

(f) Fitting the statistical model with the geo-

metrical model

Fig. 1. Automatic initialization of the 3D statistical model

2.3. Automated initialization of the 3D statistical model

To find the initial rigid transformation T0 and parameter

set Q0 to align a model instance S(Q0) with the observed

x-ray images, we model the proximal femur by a multi-

ple component geometrical model consisting of three com-

ponents: head, neck and shaft, which are described by a

sphere, a trunked cone and a cylinder with parameter set

Xgeo = {XH ,XN ,XS} respectively as shown in Fig. 1(b).

A graphical model is then constructed for the geometrical

model as shown in Fig. 1(c). The constraints among com-

ponents are encoded in the conditional distributions among

nodes [13][15]. π(XS), π(XN ), π(XH) are the prior infor-

mation for the shaft, neck and head. The conditional distribu-

tions p(XN |XS), p(XH |XN ) are set so that the geometrical

model can represent a meaningful anatomical structure of the

proximal femur. A particle filtering on a dynamic Bayesian

network (see Fig. 1(d)) is implemented to find an instance of

the geometrical model X0
geo which fits the x-ray images as

shown in Fig. 1(e).

From the mean shape of the 3D statistical model S0,

the femoral head center and radius, axes of femoral neck

and shaft can be determined in the model coordinate space.

The initial rigid transformation T0 and parameter set Q0 =
{α0, 0, . . . , 0} can then be computed to fit the statistical

model(the scaled mean shape) to the geometrical model as

shown in Fig. 1(f).

2.4. 3D statistical model based contour extraction

After the statistical model initialization, the contour extrac-

tion is accomplished by a joint registration and segmentation

as summarized in Algorithm 1.

2.4.1. 2D template based segmentation using belief propaga-
tion

From the silhouette of the projected 3D statistical model,

we sample M points(nodes) tracing along the contour as

the shape prior. Each point is described by a parameter set

qi = {xi,gi, f lagi}, i = 1, . . . , M , where xi = (xi, yi)
is the position of ith point in the image coordinate sys-

tem, gi = (gxi, gyi) is the gradient vector of the x-ray

image,flagi = 1 if the current node belongs to the fe-

mur head projection silhouette and flagi = 0 otherwise.

The configuration of our model can then be written as

Qmodel = {qi}i=1,...,M , where gi is set as the tangent vector

of the template curve at position xi. The configuration of a

candidate contour can be written as Qcand = {q′
i}i=1,...,M .

We then establish a partially connected graph with M ver-

tices as: G(V,E),V = {vi, }i=1,...,M ,E = {eij}i,j=1,...,M ,where

eij = 1 for (a)(|i − j| <= NShaft) ∩ (i �= j) ∩ (flagi =
0) ∩ (flagj = 0), (b)(flagi = 0) ∩ (flagj = 1), (c)(|i −
j| <= NHead) ∩ (flagi = 1) ∩ (flagj = 1) as shown in
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Fig. 2(a). NHead and NShaft determine the number of con-

nected neighbors for the head nodes and the non-head nodes

respectively. Larger HHead and NShaft will keep the rigidity

of the shape but will fail to track deviation from the template.

The reason that all the head nodes are connected with the

non-head nodes is that we need the non-head nodes(which

are supposed to be relatively easier to be located than the

head nodes) to guide the localization of the head nodes. The

correspondent factor graph is shown in Fig. 2(b).

Given the template Qmodel = {qi}i=1,...,M , the joint

probability distribution of the factor graph with an candidate

configuration Qcand = {q′
i}i=1,...,M is then given by

p(Qcand) =
1
Z

∏

i

ψi(q
′
i)

∏

eij=1

ψij(q
′
i,q

′
j) (2)

where ψ(q
′
i) = dot(gi,g

′
i),which means to penalize candi-

dates with weak gradient amplitude and inconsistent gradient

direction with the model.

ψ(q
′
i,q

′
j) = e

−(μ
(x

′
i−x

′
j)·(xi−xj)

‖x′
i
−x

′
j
‖‖xi−xj‖

+ν
‖‖x′

i−x
′
j‖−‖xi−xj‖‖

‖xi−xj‖ )

,
which is set so that the global shape of the model will be kept
by penalizing the deviation of the angle and distance between
vertices from our model.

1. Simulated x-ray and silhouette extraction
Given the current instanced statistical model M : S(Qn) and the

transformation Tn, project the aligned statistical model on each

of the K x-ray image planes using the projection geometry of

each x-ray image. From the simulated x-ray images the silhouettes

{Ck,n
model}k=0,...,K−1 are extracted[5].

2. 2D template based segmentation
On each x-ray image, taking the correspondent silhouette of the

projected statistical model Ck,n
model as a template, a graphical model

based shape matching is implemented to search for the bone contour

Ck,n
image as a Bayesian inference task.

3. Nonrigid 2D/3D registration
A 2D/3D nonrigid registration is carried out to fit the extracted bone

contours {Ck,n
image}k=0,...,K−1 and the statistical model M, which

results in an updated model instance M : S(Qn+1) and rigid trans-

formation Tn+1

4. Go to 1, until the procedure converges.

Algorithm 1. 3D statistical model based contour segmentation

Under these definitions, a bone contour that keeps the global

shape of our model and at the same time locates itself to the strong

edge positions can be obtained by a Maximal Likelihood(ML) esti-

mation as

C∗image = max
Qcand={q′

i}

∏

i

ψi(q
′
i)

∏

eij=1

ψij(q
′
i,q

′
j) (3)

In our approach, the candidate positions for each node of the bone

contour are sampled along the normal direction of the model and

standard loopy belief propagation[16] is used to approximate the ML

estimation as shown in Fig. 3(a).

(a) Graphical model for the contour

extraction, filled dots: head nodes,

circles: non-head nodes

(b) Factor graph for the graphical

model for the contour extraction

Fig. 2. The Bayesian network for contour extraction

(a) Graphical model based 2D segmentation,

where circles show the projected silhouettes

and dots show the extracted contours

(b) 2D/3D nonrigid registration to fit the 3D

statistical model to the extracted bone con-

tours

Fig. 3. Contour extraction as Bayesian inference

2.4.2. 2D/3D nonrigid registration

Our statistical model can be fitted to the extracted bone contours

{Ck,n
image} as a 2D/3D nonrigid registration procedure. For each

point Pl on the extracted bone contour, the correspondence between

its backprojection line BP (Pl) and a vertex vcorr(Pl) on the current

instanced statistical model M : S(Qn) and its current transforma-

tion Tn can be established. Project vcorr(Pl) onBP (Pl) will gener-

ate a correspondent 3D point pair (vcorr(Pl), P roj(vcorr(Pl), BP (Pl))).

A rigid transformation Tn+1
update can be calculated to align the current

statistical model M : S(Qn) to the extracted contours. The rigid

transformation can then be updated as Tn+1 = Tn+1
updateT

n. The

residual error between correspondent point pairs can then be com-

pensated by the constrained deformation of the statistical model[12].

An example of the nonrigid registration is shown in Fig. 3(b).

3. EXPERIMENTAL RESULTS

We verified our approach on two set of clinical data, each data set

includes four calibrated x-ray images of the proximal femur. We

first run our algorithm on the original data set with parameters set

as M = 35, NHead = 4, NShaft = 3, μ = 2, ν = 1 and the

results are shown in Fig. 4(a) and 4(b). To further verify its per-

formance against occlusion, we added artificial occlusion with dif-

ferent sizes to the x-ray images. The contour extraction results with

M = 35, NHead = 5, NShaft = 6, μ = 2, ν = 1 are shown in Fig.
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4(c) and 4(d). It can be observed that due to the existence of occlu-

sion, we have to select larger NHead and NShaft to hold the global

shape of the contour, which on the other hand leads to a failure in

tracking local deviation between the real contour and the template in

the femur neck area as shown in Fig. 4(c) and 4(d)

4. CONCLUSIONS

We introduced a 3D statistical model based fully automatic bone

contour extraction framework from calibrated x-ray images. The

automatic initialization is achieved by fitting a simplified multiple

component geometrical 3D model to the observed x-ray images.

The 3D model based initialization algorithm does not ask for strict

view direction assumption compared with 2D model or 2D image

feature based initialization. The 3D statistical model based bone

contour extraction is solved as a simultaneous 2D/3D registration

and segmentation. The model based segmentation is accomplished

by a Bayesian inference procedure which in principle can overper-

form than active contour and AAM/ASM by simultaneously opti-

mize both the global shape constraints and local image feature infor-

mation. Experiments on clinical data sets verified the validity and its

performance in the case of occlusion.

(a) Data set 1, no occlusion

(b) Data set 2, no occlusion

(c) Data set 1, with artificial occlusion

(d) Data set 2, with artificial occlusion

Fig. 4. Results of automatic proximal femur bone contour

extraction on clinical data
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